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Introduction

The leucine aminopeptidases [1] are a group of exopepti-
dases that hydrolyse N-terminal amino acid residues from 
peptide and protein substrates with a much broader speci-
ficity than that indicated by their systematic nomenclature. 
They belong to the family of metallopeptidases, M1 and M17. 
Among the M17 members, the cytosolic leucine aminopep-
tidase (LAP, E.C. 3.4.11.1) [2] has been the most extensively 
studied. Despite this, the biological significance of LAP, as 
well as many functional aspects of its mode of action, is still 
not fully understood. LAP is ubiquitous in microorganisms, 
plants and animals, is widespread in various tissues and 
organs and its role varies from organism to organism. The 
enzymes present in lower organisms are mostly responsible 
for proteolysis [3], whereas those in plants are involved in the 
defence response system and wound healing [4]. In mam-
mals, the predominant function of LAP is considered to be 
its involvement in the maturation, activation, modulation 
and degradation of bioactive peptides [1,2,5–7]. Recently, 

the leucine aminopeptidase has been proposed to be the 
key enzyme responsible for glutathione turnover in the 
liver, and thus influences the redox status of the cell [8–10]. 
The processing of antigenic peptides by LAP has a minor 
role in epitope generation for presentation by the major 
histocompatibility complex class I molecules [11,12]. An 
altered action of the enzyme has been implicated in certain 
pathological states including HIV infection, inflammation, 
eye lens cataract and cancer [13–16].

LAP can be considered a prototypical bimetallic 
aminopeptidase, since it contains two non-equivalent 
zinc ions that are both involved in substrate binding 
and catalysis. In the nineties, substantial efforts were 
dedicated to elucidating the mechanism of the catalytic 
reaction, these were mostly based on the crystal struc-
tures of the bovine lens enzyme, in both its free state and 
complexed with various inhibitors [17–24]. This topic has 
promoted a number of theoretical studies on the environ-
mental effects of zinc, the functional role of the active-site 
residues and the water channels in the homohexameric 
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structure [25–27]. The insight from these studies has lead 
to novel reflections on the action of a nucleophile in the 
active site and the reasons of the surprisingly broad spec-
ificity of the hydrolytic process. Due to the knowledge 
gathered and its biomedical importance, LAP is a good 
target for the rational design and development of novel 
inhibitors regulating its activity [28]. Among de novo con-
structed targeted molecules, organophosphorus com-
pounds, mostly aminophosphonates and phosphorus 
containing peptides, have probably contributed the most 
to this field [29–35].

In this context, the phosphorus containing deriva-
tives of norleucine (Nle) and methionine (Met) repre-
sent options not yet explored. Although analogous to 
the N-terminal residues in highly efficiently processed 
substrates [9,36,37], the Nle and Met mimetics have not 
been considered as potential inhibitors of cytosolic leu-
cine aminopeptidase. Here we report the validation of this 
hypothesis. The appropriate norleucine and methionine 
aminophosphonic and phosphinic analogues, as well as 
their phosphonate and phosphinate dipeptide derivatives 
were synthesised. In addition their affinity towards the 
enzyme was measured and discussed. Furthermore, an 
improved method for the purification of LAP from porcine 
kidneys has also been reported.

Materials and methods

General
The melting points were determined using a Boetius 
block and reported without correction. The IR spectra 
were recorded on a Bruker IFS 55 Equinox (Ettlingen, 
Germany). 1H and 13C NMR spectra were measured on a 
Bruker AVANCE-600 spectrometer (Karlsruhe, Germany) 
(1H at 600.1 MHz, 13C at 150.9 MHz), and 31P NMR spec-
tra on a Bruker Avance 400 MHz spectrometer (31P {1H} 
at 162 MHz with 85 % H

3
PO

4
 as an external reference), in 

D
2
O or DMSO-d

6
 at 300 K. The 2D-correlation spectros-

copy (2D-COSY) and 2D-H,C-heteronuclear single quan-
tum coherence (2D-H,C HSQC) spectra were recorded 
and used for the structural assignment of the proton and 
carbon signals. High resolution mass spectra (HRMS) 
were obtained on a Fourier transform mass spectrom-
eter (FTMS) LTQ-orbitrap XL (Thermo Fisher, Bremen, 
Germany) in the electrospray ionisation mode. Reverse 
phase HPLC (RP-HPLC) purification of the target com-
pounds was performed as described previously by Pícha 
et al. [38]. All chemicals were of analytical grade, obtained 
from commercial suppliers (Sigma-Aldrich and Fluka, 
Prague, Czech Republic and Poznań, Poland, Merck, 
Darmstadt, Germany, POCh, Gliwice, Poland) and were 
used without further purification. Biochemical materials 
were purchased from Pharmacia, (Uppsala, Sweden), 
Bio-Rad (Hercules, USA) and Millipore (Billerica, USA). 
Porcine kidney was obtained from a local slaughterhouse 
and stored at −20°C. A UV-Visible Cary 100 spectropho-
tometer (Varian, Australia) was used for the kinetic 
assays.

Synthesis
The phosphonic analogue of methionine (1, Met-P, for 
structures see Figure 3) was prepared from 3-(methylthio)
propionaldehyde according to the method described 
previously by Stec and Kudzin [39]. The phosphonic 
analogue of norleucine (3, Nle-P) was obtained from 
the respective aldehyde as described by Pícha et  al. 
[38,40]. The syntheses of the phosphinic compounds 
Met-PH (2), Nle-PH (4) and Met-ψ[P(O)(OH)CH

2
]-Ala 

(5) were recently published elsewhere and we have only 
provided the detailed physico-chemical characteristics 
that weren′t reported in our previous communication 
here [41]. The preparation of the phosphonate esters 
6–8 was achieved by the coupling of monobenzyl 1-(N-
benzyloxycarbonylamino)pentyl phosphonate with the 
respective derivatives of L-lactic acid and is described in 
detail elsewhere [38,40].

[1-(R,S)-amino-3-(methylsulphanyl)propyl]phosphonic acid (1)
Yield 36% (through two steps); mp 272–274°C (lit. mp 
270–272°C [39]); IR (KBr): ν

max
 (cm−1) 2966, 2910 br, 2293, 

1583, 1182, 1030, 928, 558; 1H NMR (D
2
O + NaOD) δ 1.61 

(m, J = 14, 10.7, 9.4, 7 and 4.6 Hz, 1H, C-CHaHb-C), 2.03 (m, 
J = 14, 9.7, 7.3, 7.3 and 3.2 Hz, 1H, C-CHaHb-C), 2.12 (s, 3H, 
CH

3
), 2.59 (ddd, J = 13, 9.4 and 7.3 Hz, 1H, S-CHaHb-C), 

2.61 (ddd, J = 11.2, 10.7 and 3.2 Hz, 1H, N-CH-P), 2.75 (ddd, 
J = 13, 9.7 and 4.6 Hz, 1H, S-CHaHb-C); 13C NMR (D

2
O + 

NaOD) δ 16.74 (CH
3
), 33.91 (d, J(C,P) = 14.4 Hz, CH

2
), 

33.93 (CH
2
), 52.01 (d, J(C,P) = 137.8 Hz, CH); 31P NMR 

(D
2
O + NaOD) δ 21.81; HRMS (ESI) calcd for C

4
H

11
NO

3
PS 

[M-H]− 184.0203; found: 184.0203.

[1-(R,S)-amino-3-(methylsulphanyl)propyl]phosphinic acid (2) 
[41]
Mp 232–233°C (lit. mp 231°C [42]); IR (KBr): ν

max
 (cm−1) 

2970, 2900 br, 1549, 1192, 1041, 966; 1H NMR (D
2
O) δ 

1.99 (m, J = 14.9, 12.3, 8.6, 8 and 5.9 Hz, 1H, C-CHaHb-C), 
2.12 (s, 3H, CH

3
), 2.2 (m, J = 14.9, 10.6, 8.3, 7.1 and 5.5 

Hz, 1H, C-CHaHb-C), 2.69 (ddd, J = 13.7, 8 and 7.1 Hz, 
1H, S-CHaHb-C), 2.76 (ddd, J = 13.7, 8.3 and 5.9 Hz, 1H, 
S-CHaHb-C), 3.32 (m, J = 10.8, 8.6, 5.5 and 1.4 Hz, 1H, 
N-CH-P), 7.03 (dd, J = 534.8 and 1.4 Hz, 1H, P-H); 13C NMR 
(D

2
O) δ 16.47 (CH

3
), 28.04 (CH

2
), 32.06 (d, J(C,P) = 9.8 

Hz, CH
2
), 52 (d, J(C,P) = 91.6 Hz, CH); 31P NMR (D

2
O) δ 

20.4; HRMS (ESI) calcd for C
4
H

11
NO

2
PS [M-H]− 168.0254; 

found: 168.0254.

[1-(R,S)-aminopentyl]phosphinic acid (4) [41]
Mp 235°C (lit. mp 230–232°C [43]); IR (KBr): ν

max
 (cm−1) 

3200–2500 br, 1546, 1192, 1057, 971; 1H NMR (D
2
O + 

NaOD) δ 0.9 (t, J = 7.3 Hz, 3H, CH
3
), 1.38 (m, 2H, CH

2
), 

1.33 and 1.47 (m, 2H, CH
2
), 1.56 and 1.8 (m, 2H, CH

2
), 

2.9 (m, 1H, N-CH-P), 6.87 (dd, J = 519 and 1.4 Hz, P-H); 
13C NMR (D

2
O + NaOD) δ 13.68 (CH

3
), 22.37 (CH

2
), 

27.64 (CH
2
), 28 (d, J(C,P) = 9.8 Hz, CH

2
), 51.09 (d, 

J(C,P) = 95.5 Hz, CH); 31P NMR (D
2
O + NaOD) δ 34.30; 

HRMS (ESI) calcd for C
5
H

13
NO

2
P [M-H]− 150.0689; 

found: 150.0690.
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3-{[1-(R,S)-amino-3-(methylsulphanyl)propyl](hydroxy)
phosphinyl}-2-(R,S)-methylpropanoic acid (5) (lyophilate) [41]
IR (KBr): ν

max
 (cm−1) 2980 br, 2922, 1699, 1201, 1058; 

NMR (mixture of diastereoisomers in the ratio of ∼ 2:1; 
the signals were well resolved in the 13C NMR spectra, 
and the chemical shift of the major isomer has been 
reported first) 1H NMR (DMSO-d

6
) δ 1.19 (d, J = 7.1 Hz, 

3H, C-CH
3
), 1.67 and 2.05 (m, 2H, P-CH

2
-C), 1.84 and 2.04 

(m, 2H, C-CH
2
-C), 2.04 (s, 3H, S-CH

3
), 2.59 and 2.68 (m, 

2H, S-CH
2
-C), 3.25 (m, 1H, N-CH-P), 8.13 (br, 2H, NH

2
); 

13C NMR (DMSO-d
6
) δ 14.41 and 14.42 (S-CH

3
), 19.12 and 

19.1 (d each, J(C,P) = 8.2 Hz, CH
3
), 27.65 and 27.78 (CH

2
), 

29.73 and 29.72 (d each, J(C,P) = 8.8 Hz, S-CH
2
), 31.34 

and 31.32 (d each, J(C,P) = 93.7 Hz, P-CH
2
), 33.54 (d each, 

J(C,P) = 3.9 Hz, CH), 48.19 and 48.08 (d each, J(C,P) = 92.6 
Hz, N-CH-P), 176.9 and 176.85 (d each, J(C,P) = 9.6 Hz, 
COOH); 31P NMR (DMSO-d

6
) δ 36.07; HRMS (ESI) calcd 

for C
8
H

17
NO

4
PS [M-H]− 254.0621; found: 254.0622.

Enzyme purification and inhibitory activity 
measurements
The cytosolic leucine aminopeptidase from commercial 
sources has been found to be a non-homogeneous prepa-
ration which required further work up [44]. Recently, the 
protein stopped being available for purchase. Therefore, the 
LAP used in our studies was isolated from porcine kidneys 
according to the standard literature procedure [45–48], 
with the modification of a multi-step chromatographic 
purification (five consecutive steps). Consequently, the 
procedure consisted of: (1) extraction into 100 mM Tris-
HCl buffer (pH 8, 50 mM NaCl, 10 mM 2-mercaptoethanol) 
and precipitation of the enzyme with acetone at −20°C; (2) 
classic fractionation with ammonium sulphate (40%-65% 
saturation); (3) gel filtration using a Sephadex G-25 col-
umn (100 mM Tris-HCl buffer, pH 8, 50 mM NaCl, 10 mM 
2-mercaptoethanol); (4) ion-exchange chromatography on 
a DEAE-Sepharose column (100 mM Tris-HCl buffer, pH 8, 
NaCl gradient 0→0.25 M, 10 mM 2-mercaptoethanol); (5) 
gel filtration using a Sephacryl S-200 HR column (100 mM 
Tris-HCl buffer, pH 8, 100 mM NaCl, 10 mM 2-mercapto-
ethanol) and dialysis followed by (6) fractionation using a 
phenyl Sepharose 6 Fast Flow column (100 mM Tris-HCl 
buffer, pH 8, ammonium sulphate gradient 1.0→0 M, 10 mM 
2-mercaptoethanol). After dialysis, final purification was 
carried out using Macro-Prep High Q (Bio-Rad, Hercules, 
USA) column chromatography (100 mM Tris-HCl buffer, 
pH 8, NaCl gradient 0.05→0.5 M, 10 mM 2-mercaptoeth-
anol). The active fractions were pooled and concentrated 
by ultrafiltration using a YM-10 membrane. All procedures 
were performed at 4°C. The enzyme was stored as a suspen-
sion in an ammonium sulphate solution (3.5 M (NH

4
)

2
SO

4
, 

100 mM Tris-HCl buffer, pH 8, 10 mM MgCl
2
).

In this manner, a homogeneous sample (1258-fold 
purification, Figure 1) of a superior purity to that of the 
commercial enzyme was obtained. Other noticeable 
advantages of the procedure reported here, was that the 
final preparations were considerably more stable and they 
did not change in activity on storage in the refrigerator at 
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Figure 3.  Newly designed and synthesised inhibitors of leucine 
aminopeptidase derivatives of methionine and norleucine.
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Figure 1.  SDS-polyacrylamide gel electrophoresis after the enzyme 
purification (the molecular weights of the markers are indicated on 
the left). From the left: lane l: molecular weight markers, lane 2: the 
crude extract, lane 3: 40-65% ammonium sulphate precipitation, lane 
4: Phenyl Sepharose fraction, lane 5: Macro-Prep High Q fraction. The 
gel was stained with Coomassie Brilliant R-250.
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L-Val-P
(Ki = 0.15 µM)

L-Leu-P
(Ki = 0.23 µM)

hPhe-P
(Ki = 0.14 µM)

hTyr-P
(Ki = 0.12 µM)
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OH
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P
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OH
OH
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P
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Figure 2.  Selection of α-aminophosphonic acid inhibitors of LAP: 
analogues of natural (L-Val-P [30] and L-Leu-P [29]) and non-natural 
(hPhe-P and hTyr-P [32]) amino acids, and their activity towards LAP.
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4°C for several weeks. The protein had the correct molec-
ular mass (apparent molecular weight 312 kD ± 27 kD for 
the homohexameric form) as determined by gel filtration 
on a Sephacryl S-200 HR column and its Michaelis con-
stant for L-leucine p-nitroanilide was 0.72 ± 0.15 mM. The 
phosphonic analogue of homophenylalanine (hPhe-P, 
Figure 2) was used as a positive control in the inhibition 
of the enzyme activity measurements.

Kinetic inhibition assays were performed as described 
earlier [32–34]. LAP was assayed in 75 mM triethanolamine 
hydrochloride buffer (pH = 8.4, containing 5 mM MgCl

2
) 

at 25°C. The substrate (L-leucine-p-nitroanilide) was dis-
solved in DMSO and added to the assay buffer followed by 
the enzyme. The hydrolysis of the substrate was monitored 
by the change in absorbance measured at 405 nm. All the 
inhibitor solutions were prepared in the assay buffer. The 
assay solution, which contained 0.05 mL of the substrate 
solution (0.2, 0.4, 0.6, 0.8, 1 mM final concentrations), 
0.25 mL of an inhibitor solution (concentration depen-
dent on the inhibitor), the enzyme solution (20 μg/ml 
final concentration) and adjusted to a 1 mL final volume. 
The calculations were performed using three methods: 
Lineweaver-Burk, Dixon and semi-inhibition plots. The 
values of the inhibition constants presented are the aver-
ages of the three values. For compound 5, the K

i
 value was 

calculated from the dependence k
app

 versus inhibitor con-
centration. The kinetic constants for slow-binding were: 
k

1
 = 34389.43 M−1 × min−1, k

2
 = 0.13416 min−1.

Results and discussion

Leucine aminopeptidase is a hydrolase with broad 
band specificity that cleaves substrates bearing distinct 
N-terminal amino acid residues [2,7,27], varying from 
neutral to both acidic and basic. However, those substrates 
containing N-termini of a hydrophobic character, such as 
leucine, methionine, isoleucine and valine, are processed 
noticeably faster. Proline remains the only naturally occur-
ring amino acid that is not recognised by LAP when it is 
in the P1 position. A similar pattern of ligand affinity can 
be observed for the structurally related aminophosphonic 
acids, when applied as inhibitors of LAP. The analogues of 
natural hydrophobic aliphatic amino acids, such as valine 
and leucine, appeared to be the most efficient inhibitors 
with a K

i
 = 0.15 and 0.23 μM, respectively (for the R (L) 

enantiomers, Val-P [30] and Leu-P [29], Figure 2). Non-
coded arylalkyl derivatives, exemplified by phosphonic 
homophenylalanine and homotyrosine, were bound 
preferentially to an even greater extent (K

i
 = 0.14 and 0.12 

μM, respectively, for the racemic mixture, hPhe-P and 
hTyr-P [32], Figure 2). The aforementioned structure was 
further modified to the phosphinic pseudodipeptides that 
appeared to be the most active organophosphorus inhibi-
tors of LAP developed to date [33,35].

Surprisingly, there is no data in the literature on LAP 
inhibition by organophosphorus derivatives of methi-
onine and norleucine although peptides with natural Met 
or Nle N-termini are among the most efficiently cleaved 

substrates. The kinetic parameters reported for the hydro-
lysis of Nle-X in the early works of Smith et  al. [36,37] 
and recently for Met-X [9] indicated they are processed 
slightly faster than the corresponding leucine derivatives. 
Therefore, to verify their potency towards leucine amino-
peptidase we tested the phosphonic (1, Met-P, Figure 3) 
and phosphinic methionine analogues (2, Met-PH) as well 
as their aliphatic, non-sulphur norleucine counterparts (3, 
Nle-P and 4, Nle-PH). An additional reason for our interest 
in the latter compounds (3 and 4) was the promising affin-
ity (K

i
 ≤ 1.0 μM) to LAP found for 1-amino-n-hexanephos-

phonic [29] and 1-amino-n-octanephosphonic acid [32], 
which are homologous to the Nle-P ligands of LAP. Both 
the methionine and norleucine compounds were fur-
ther elongated to obtain the phosphinate (5, Met-ψ[P(O)
(OH)CH

2
]-Ala) and phosphonate lactic acid esters (6–8, 

Nle-ψ[P(O)(OH)O]-Ala derivatives). This analysis evalu-
ated the influence of the P1′ fragment introduced into the 
essentially designed structures and the C-terminus status 
on the inhibitory potency of the respective compounds.

The measured inhibition activity towards leucine 
aminopeptidase of the synthesised aminophosphonates 
and aminophosphinates is presented in Table 1. The 
tested compounds appeared to be moderate competitive 
inhibitors of LAP, with the phosphinic peptide 5 exhibit-
ing slow-binding kinetics. The latter observation was not 
unexpected since other representatives of this group of 
pseudopeptides have been reported to display similar 
kinetics [29,30,33]. Although the actual reasons of this 
remained elusive, a protein conformational change or 
slow displacement of an active-site water molecule has 
been suggested as the factors responsible [29].

To our surprise, the studied ligands did not follow 
the general rules previously found for inhibition of LAP 
by phosphonic and phosphinic acids [29,30,32,49]. The 
analogues of methionine 1 (K

i
 = 22.6 μM, Table I) and nor-

leucine 3 (K
i
 = 58 μM) did not exhibit comparable affinity 

to the corresponding valine or leucine derivatives, being 
approximately 20-fold (Met-P) and 50-fold (Nle-P) less 
potent than the racemic mixture of one of the most active 
aliphatic aminophosphonate compound Val-P (K

i
 = 1.2 μM 

[29]). This indicates that the novel compounds are located 
unfavourably in the enzyme S1 binding pocket.

Some particularly interesting observations were made for 
the α-aminophosphinic acids 2 and 4. Met-PH and Nle-PH 
were practically equipotent with their phosphonic counter-
parts (compare entries 1 versus 2 and 3 versus 4 in Table 1). 
Previous reports suggested there should be significantly 
weaker binding by the zinc ions present in the active site, and 
thus show a large disparity in their K

i
 values (for example, 

for leucine analogues this disparity exceeded two orders of 
magnitude) [49,50]. Thus, the difference in inhibitory activity 
of compounds 1–4 depended only on the structure of their 
side chain substituents. The positive influence of the bulkier 
sulphur atom containing residue versus the aliphatic residue 
of the same length can easily be seen. This observation sug-
gests that the presence of the norleucine side chain causes 
greater distortion in the optimal binding of these inhibitors.
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The phosphonate esters Nle-ψ[P(O)(OH)O]-Ala (com-
pounds 6–8) were found to be several times less active 
than the amino acid they originated from. In general, 
almost any modification, such as replacement or protec-
tion, that excluded one of the three oxygen atoms bound 
to phosphorus from interacting with the LAP active site, 
resulted in similar or even greater loss of inhibitory effi-
ciency (for representative examples see also reference 
[49]). Nevertheless, some interesting findings on the status 
of the C-termini of these compounds were observed. For 
instance, the methyl ester 7 was moderately tolerated by 
the enzyme, and surprisingly, was a slightly stronger inhibi-
tor than the free acid 6. This seems to be a new observation 
since the non-protected carboxylate has been thought to 
be the best C-terminus and thus preferentially bound in 
the active site [33]. The amide 8, which is the closest ana-
logue to the substrate structure, was totally discriminated.

The phosphinic dipeptide analogue 5 appeared to be 
the only positive elongation of the fundamental amino 
acid structure. Although it was tested as a mixture of 
four diastereoisomers it appeared to be a low micromo-
lar inhibitor of LAP (K

i
 = 3.64 μM, Table 1). However, as 

seen before, this compound did not reach the level of 

inhibition found for the analogues bearing the favour-
able leucine side chain in the P1 position, for example 
Leu-ψ[P(O)(OH)CH

2
]-Gly (K

i
 = 0.33 μM) [33].

Apparently, derivatives of methionine and norleucine 
cannot serve as privileged P1 residues for construction 
of efficient inhibitors of the leucine aminopeptidases. 
This is unexpected, and in contrast with the substrate 
preferences of the enzyme, as well as with the general 
trends observed earlier. The non optimal contacts with 
the S1 binding pocket of LAP seems to be a straightfor-
ward explanation for this fact. This, most likely, results 
in a slightly different binding mode and distortion of 
the complexation of the phosphorus fragment by the 
zinc ions, which is the most important feature for tight 
binding. Such an unpredictable mode of binding has 
already been reported for the phosphinate and phos-
phonamidate dipeptide mimetics, rationally designed as 
favorable inhibitors of LAP [34,51]. A recent hypothesis, 
based on a correlation of kinetic parameters obtained 
for a set of fluorogenic substrates with the activity of 
α-aminophosphonic inhibitors of aminopeptidase N 
(an M1 peptidase with a specificity related to LAP) [52], 
can represent a complementary clarification. According 

Table 1.  The inhibitory activity of the phosphorus containing amino acid and dipeptide derivatives of methionine and norleucine 
towards the cytosolic leucine aminopeptidase.

Compound K
i
 [μM]

1 (R,S)
S P

OH

O
OH

NH2

22.6

2 (R,S)
OH

NH2

S P
H

O 22

3 (R,S)
OH
OH

NH2

P
O 58

4 (R,S)
OH

NH2

P
H

O 73.9

5 (R,S) and (R,S) 
4 diastereoisomers

OH

NH2

S P
O

COOH

3.64*

6 (RS,SS) 
2 diastereoisomers

OH

NH2

P
O

O

COOH

268.7

7 (RS,SS) 
2 diastereoisomers

OH

NH2

P
O

O

COOMe

219

8 (RS,SS) 
2 diastereoisomers

OH

NH2

P
O

O

CONH2

No inhibition up to 0.67 mM inhibitor concentration

* slow-binding, mechanism A
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to these data, it wasn′t the turnover velocity (expressed 
by the k

cat
/K

m
) but only the strength of substrate bind-

ing (described by the K
m

 value) that predicted the most 
reliably structural features responsible for the inhibi-
tory potency. Thus, the appropriate P1 residue incor-
porated into the α-aminophosphonate core would be 
indispensable for the tight binding of a ligand to an 
aminopeptidase.

Conclusion

Leucine aminopeptidase is probably the most 
comprehensively characterised bizinc target hydrolase 
with regards to the regulation of its activity by organo-
phosphorus compounds. A broad collection of amino-
phosphonates and phosphopeptides mimicking the 
tetrahedral transition state of amide bond hydrolysis 
allowed for a systematic structure – activity relationship 
determination. Methionine and norleucine derivatives 
were exceptions and had not been studied, even though 
evidence for the preferential cleavage of the appropriate 
substrates by the enzyme has been observed. To fill this 
gap, a set of phosphonic and phosphinic analogues of 
these amino acids and their dipeptides were synthesised 
and their inhibitory activity towards LAP was evaluated. 
The enzyme was separated from porcine kidneys using an 
improved procedure. The studied compounds appeared 
to be moderate ligands of LAP, with affinity expressed by 
their K

i
 values in the micromolar range. An additional 

observation indicating the unusual behaviour of inhibi-
tors in the active site was also seen. The linear four atom 
P1 residues, even those containing a sulphur atom in 
their structure, are most likely to be not bulky or extended 
enough to bind tightly in the S1 binding pocket and cause 
effective complexation of the zinc ions by the phosphoryl 
moiety at the same time.
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